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A simple theory for high ∆/Tc ratio in d-wave superconductors
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Abstract. We investigate a simple explanation for the high maximum gap to Tc ratio found experimentally
in high Tc compounds. We ascribe this observation to the lowering of Tc by boson scattering of electrons
between parts of the Fermi surface with opposite sign for the order parameter. We study the simplest
possible model within this picture. Our quantitative results show that we can account for experiment for
a rather small value of the coupling constant, all the other ingredients of our model being already known
to exist in these compounds. A striking implication of this theory is the fairly high value of the critical
temperature in the absence of boson scattering.

PACS. 74.20.Fg BCS theory and its development – 74.25.Jb Electronic structure – 74.72.Bk Y-based
cuprates

A puzzling feature of high Tc cuprate superconductors is
the fairly high value of the maximum ∆0 of the super-
conducting gap compared to the critical temperature. In-
deed it seems to range from 3 to 4 in most experiments,
performed mainly on YBCO and on BSCCO [1]. This is
to be compared with standard BCS value 1.76. Since it
is widely believed that these compounds are unconven-
tional, with in particular changes of sign for the order
parameter, it would seem that this is not much of a prob-
lem. However this ∆0/Tc ratio is surprisingly very stable
within all the generalizations of BCS theory which have
been put forward for these compounds. Van Hove singu-
larities and more generally any varying density of states
raise it at most up to 2, any reasonable anisotropy [2]
gives a result not so much beyond the d-wave value 2.14
and it requires strong coupling effects incompatible with
experiments to push it in the experimental range. All these
explanations are far from explaining the typical increase
by a factor 2 compared to the BCS value, and one may
wonder if a more complicated theoretical framework is not
necessary in order to account for this ratio.

We show in this paper that this is not the case and that
the data can be explained quantitatively to a large extent
by a simple theoretical model in the standard framework
of mean-field theory. Actually, except for the rather mod-
erate value of the coupling constant we require, all the
physical ingredients of our model are known to be present
in these compounds, which makes our explanation a very
natural one. However we do not apply this claim to the
very high values of ∆0/Tc found recently [3,4] in under-
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doped BSCCO. We believe that, even if they are clearly
related to superconducting properties [5], some additional
physics, specific of this regime and this very anisotropic
compound, is required to account for such very high re-
sults. Our focus is on the more standard values found else-
where, in other compounds (in particular YBCO) and in
optimally and overdoped BSCCO.

The basic idea of our model is the following. As is well
known, when a superconductor has an order parameter
which changes sign over the Fermi surface, superconduc-
tivity tends to be destroyed by anything, like impurities,
which scatters electrons between parts of the Fermi sur-
face with opposite signs. If these scattering sources are
present at Tc but not at T = 0, they will lower the crit-
ical temperature but the zero temperature gap will be
much less affected. This leads naturally to an increase of
the ∆0/Tc ratio. In order for the number of these scatter-
ing sources to be temperature dependent, we have merely
to take them as bosons, corresponding to a proper kind
of collective modes of our system. Although other kind of
fluctuations or modes may be considered, the simplest and
most natural choice is phonon scattering. As we will see
the typical energy needed for these bosons is in reason-
able agreement with the frequencies available for phonons
in these compounds.

The idea of explaining a large value of ∆0/Tc by a de-
crease of Tc is already present in the literature, but to our
knowledge it has not been put to work specifically in the
case of d-wave superconductors [6]. It is actually the usual
qualitative picture behind the enhanced value of∆0/Tc in
strongly coupled standard superconductors: the argument
is that thermally activated phonons tend to destroy super-
conductivity and lower Tc while the zero temperature gap
is not so affected since there are no real phonons present at
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T = 0. In the context of high Tc superconductors Lee and
Read [7], noticing the strong inelastic scattering exper-
imentally observed, have already proposed qualitatively
this kind of mechanism to suggest a lowered Tc. Here we
rely specifically on the fact that the order parameter in
high Tc superconductors changes sign to obtain an im-
portant effect, compatible with experiment. We will more
precisely assume the d-wave symmetry, as it is most often
done, although our mechanism actually requires only ba-
sically that the order parameter takes different signs on
the Fermi surface.

In order to explore this kind of explanation and see if
it can work quantitatively for high Tc compounds, we take
the simplest possible model which retains all the qualita-
tive features of our picture. Specifically we consider a class
of models which has already been studied by Preosti, Kim
and Muzikar [8] in the presence of impurity scattering: we
mimic a d-wave superconductor by taking an order pa-
rameter which takes a constant value ∆+ on some parts
of the Fermi surface and the opposite value ∆− = −∆+

on the rest of the Fermi surface. We immediately spe-
cialize to the situation where the + and − regions have
equal weight, as it is the case when they are related by
symmetry. We assume that bosons scatter electrons from
the + to the − region and vice versa, and for simplicity
we retain only those bosons. We take a simple Einstein
spectrum with frequency Ω for these bosons, with cou-
pling constant λ to the electrons. We assume the pairing
interaction to have a characteristic energy much higher
than Tc and Ω, and take a weak coupling description for
the pairing. Therefore we do not make any specific as-
sumption on the pairing mechanism: it may originate from
pure Coulomb interaction or from spin fluctuations, it may
contain contributions from high energy phonons or even
have a more intricate origin. Again for maximum simplic-
ity we keep only a constant repulsive pairing interaction
between the + and the − regions. We do not expect any
considerable quantitative changes from all these simplifi-
cations, all the more since it is known that the ∆0/Tc ratio
is quite robust.

With all these simplications the Eliashberg equations
at temperature T read for our model:

∆±,nZ±,n = πT
∑
m

Λn−m
∆∓,m

(ω2
m +∆2

∓,m)1/2
(1)

ωn(Z±,n − 1) = πT
∑
m

λn−m
ωm

(ω2
m +∆2

∓,m)1/2
· (2)

Here ∆±,n and Z±,n are the order parameter and the
renormalization function at the Matsubara frequency
ωn = πT (2n+1) in the ± regions. The effective frequency-
dependent interaction Λn = λn − k contains the pair-
ing interaction k, with a cut-off frequency ωc and the
boson mediated interaction λp = λΩ2/(Ω2 + ω2

p) with
ωp = 2πpT the boson Matsubara frequency. As men-
tioned above we have ωc � Ω and Tc. When we spe-
cialize to d-wave symmetry and insert the corresponding
relation ∆−,n = −∆+,n ≡ ∆n into these equations, we

obtain Z−,n = Z+,n ≡ Zn and find that ∆n and Zn sat-
isfy equations (1, 2) (with ∆±,n and Z±,n replaced by ∆n

and Zn) provided that we change the sign in front of Λn.
The resulting equations are just the ones obtained in stan-
dard strong coupling theory, except that the roles are re-
versed between the boson and the Coulomb terms: here,
because of the change of sign of the order parameter be-
tween the + and the − regions, the boson term becomes
effectively repulsive and the Coulomb one effectively at-
tractive.

We have solved these equations directly both for the
change of critical temperature and for the zero tempera-
ture gap. However it turns out to be much more conve-
nient to eliminate the pairing interaction and the cut-off
in favor of the critical temperature T 0

c in the absence of
boson scattering. This is done by taking explicitely into
account that, for Ω � ωn � ωc, ∆n goes to a constant
and Zn goes to 1. Let us first consider the calculation
of Tc, where ∆n gets very small and Zn takes just its
normal state value. We call ∆∞ this large frequency limit
of ∆n and set ∆nZn = ∆∞+dn. Since, as can be checked,
the pairing term dominates in this range we obtain from
equations (1, 2) (after taking into account that ∆n and Zn
are even functions of ωn) that ∆∞ satisfies:

∆∞ = 2kπT
ωc∑
m=0

∆∞ + dm
ωmZm

· (3)

This leads to deal with S = πT
∑
dm/ωmZm where the

upper boundary can be taken as infinity since the sum
converges. We have also to consider S′ = πT

∑
1/ωmZm

where we have to keep the cut-off, but this can be ex-
pressed in terms of T 0

c as S′ = SZ +(1/2) ln(T 0
c /T )+1/2k

with SZ = πT
∑

(1/Zm − 1)/ωm where again infinity
can be taken as upper boundary. This leads to ∆∞ =
−S/[SZ+(1/2) ln(T 0

c /T )]. When this is carried into equa-
tion (1) this gives the numerically convenient eigenvalue
problem:

dn = −πT
∞∑
m=0

(λn−m + λn+m+1)
∆∞ + dm
ωmZm

(4)

which is satisfied when T = Tc. Note that a similar pro-
cedure could be applied to the standard Eliashberg equa-
tions.

We are left with only two parameters, namely the re-
duced frequency Ω/T 0

c and the coupling strength λ of the
bosons. We have plotted in Figure 1 the ratio Tc/T

0
c , of

the critical temperature Tc compared to its value with-
out coupling T 0

c , for various values of the ratio Ω/T 0
c go-

ing from 0.2 to 1. Naturally Tc decreases with increas-
ing λ since boson scattering is pair breaking. High values
of Ω/T 0

c are not of much interest for us since they corre-
spond to a full weak coupling regime, and the ratio ∆/Tc

will merely be given by the standard BCS value. Similarly
large values of λ lead to a strong decrease of Tc as can be
seen in Figure 1. This produces a large Ω/Tc and leads
again to the BCS value for ∆/Tc. On the other hand the
result in the low frequency limit Ω/T 0

c → 0 is easily ob-
tained. Indeed in this case ωnZn = πT (2n + 1 + λ) and
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Fig. 1. Tc/T
0
c as a function of the coupling strength λ for

Ω/T 0
c = 0., 0.2, 0.3, 0.4, 0.6, 0.8 and 1. Insert: ∆0/T

0
c as a func-

tion of λ, for the same values of Ω/T 0
c (Ω = 0 omitted).

λn−m + λn+m+1 = λδn,m. This leads from equation (4)
to an explicit expression for the n dependence of dn and
to the result ln(T 0

c /Tc) = ψ(λ+ 1/2)−ψ(1/2) where ψ is
the digamma function. This is just an Abrikosov-Gorkov
result [9], as might have been anticipated since bosons be-
have as impurities in the Ω → 0 limit [10]. This analytical
result is actually in very good agreement with our numer-
ical calculations for Ω/T 0

c = 0.2. A noticeable feature of
Figure 1 is the strong sensitivity of Tc on boson scattering
even for moderate coupling strength. Indeed it is severely
reduced already for λ � 1. For example the slower de-
crease of Tc corresponds to the case Ω/T 0

c → 0, but even
in this case the slope for small λ is −π2/2.

Let us consider now the calculation of the zero tem-
perature gap, where the situation is somewhat more com-
plicated. In the T → 0 limit ∆n and Zn become func-
tions ∆(ω) and Z(ω) of the continuous variable ωn ≡ ω.
As for the calculation of Tc we set∆(ω)Z(ω) = ∆∞+d(ω).
In the same way the pairing term dominates in equa-
tion (1) for large ω which leads to the following equation
for ∆∞:

∆∞ = k

∫ ωc

0

dω′
∆(ω′)

[ω′2 +∆2(ω′)]1/2
(5)

where naturally ∆(ω) in the right-hand side is expressed
in terms of Z(ω) and d(ω). For d(ω) we are left with:

d(ω) = −1
2

∫ ∞
−∞

dω′ λω−ω′
∆(ω′)

[ω′2 +∆2(ω′)]1/2
(6)

with λω = λΩ2/(Ω2 + ω2) and:

ω(Z(ω)− 1) =
1
2

∫ ∞
−∞

dω′ λω−ω′
ω′

[ω′2 +∆2(ω′)]1/2
(7)

where we can naturally use the even parity of ∆(ω)
and Z(ω). As we have done above for Tc we can use the

weak coupling expression for the zero temperature gap
∆BCS = 1.76 T 0

c for λ = 0, obtained from equation (5) by
setting ∆(ω) = ∆∞ = ∆BCS, to eliminate the cut-off ωc

and k. This leads to:

ln
∆∞
∆BCS

=
∫ ∞

0

dω
∆(ω)/∆∞

[ω2 +∆2(ω)]1/2
− 1

[ω2 +∆2
∞]1/2

· (8)

This last equation does not provide an explicit expression
for ∆∞ in contrast with what we have for Tc. However
this is not in practice a problem, since it can be easily
included in the iteration procedure used to solve numeri-
cally equations (6, 7) and (8). In order to find the gap ∆0

we still have to continue ∆(ω) and Z(ω) analytically to-
ward the real frequency axis into ∆̄(ν) ≡ ∆(−iν) and
Z̄(ν) ≡ Z(−iν), and solve ∆̄(∆0) = ∆0. This is done
by using the explicit expression for this continuation [11].
Note that this analytic continuation lowers noticeably the
gap values, compared to the naive evaluation ∆0 = ∆(0).

Just as for Tc, the low boson frequency limit Ω → 0
is of particular interest. Indeed it leads to a very sim-
ple model of strongly interacting fermions with quite non-
trivial results. Naturally we have in this limit to let λ
increase in such a way that λΩ stays finite otherwise
one obtains trivially the BCS result, as it is clear from
the equations found below. For this case equations (6, 7)
lead to algebraic equations because the Lorentzian com-
ing in the integrals gets very narrow. One obtains Z(ω) =
1+πλΩ/2[ω2 +∆2(ω)]1/2 and d(ω) = −πλΩ∆(ω)/2[ω2 +
∆2(ω)]1/2, giving for ∆(ω) the simple equation:

∆(ω) = ∆∞ − πλΩ
∆(ω)√

ω2 +∆2(ω)
· (9)

This equation (a fourth order equation) can be solved an-
alytically and is very simple to solve numerically. The an-
alytical continuation is merely obtained by replacing ω2

by −ν2 in equation (9). However one can see easily that
the equation ∆̄(ν)/∆∞ = 1 − K∆̄(ν)/[−ν2 + ∆̄2(ν)]1/2,
where K = πλΩ/∆∞, has no purely real solution when
ν/∆∞ becomes larger than ν0/∆∞ = (1−K2/3)3/2, cor-
responding to a gap ∆0 = ∆̄(ν0) = ∆∞(1−K2/3). Indeed,
beyond this point, ∆̄(ν) gets complex and the density of
states is no longer zero. It is quite interesting to note
that, in this limit, this nonzero density of states occurs
before the equality ∆̄(∆0) = ∆0 is reached. To be com-
plete we have to find the value of ∆∞ in this limiting sit-
uation. The integral in the defining equation (8) can actu-
ally be performed analytically (essentially by taking ∆(ω)
as the variable) and is merely equal to πK/4. Then ∆∞
is obtained as the solution of the simple transcendental
equation ∆∞/∆BCS = exp(−π2λΩ/4∆∞). Note that this
equation has always a single solution in the physical range
K < 1.

Coming back to our problem, we have, for Ω/T 0
c = 0.2

and a varying coupling strength λ, compared the result
obtained for ∆∞ in the limiting situation we have just
considered with the general calculation we have performed
for any Ω/T 0

c . The agreement is quite good. From this it
would be tempting to conclude that, for small Ω/T 0

c , we
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Fig. 2. Ratio of the gap over the critical temperature ∆0/Tc

as a function of the coupling strength λ, for fixed values of
Ω/T 0

c = 0.2, 0.3, 0.4, 0.6, 0.8, 1.

can also conveniently extract the gap itself from this an-
alytical solution. This is unfortunately not true: a good
agreement for imaginary frequencies does not imply that
the analytical continuations to the real frequency axis
agree quite closely, since this analytical continuation is
very sensitive to small differences as it is well known. And
indeed in our case there is a sizeable difference between
the gaps obtained by the two methods. The results of our
calculations for the zero temperature gap are displayed in
the insert of Figure 1. They show that, even for small λ,
∆0 is quite sensitive to boson scattering, although the ef-
fect is not as strong as for Tc. We stress in particular that,
contrary to the simple expectation, the gap at T = 0 is
strongly modified although no bosons are present.

Finally our results for the ratio ∆0/Tc are shown in
Figure 2 for the interesting range of values for the param-
eter Ω/T 0

c . We note first that, for Ω/T 0
c = 1, the result

does not depart much from the BCS result. Naturally this
is even more so for higher values of Ω/T 0

c for which the
results are not displayed. In the same way we find as ex-
pected that, for large values of λ, ∆0/Tc decreases toward
the BCS value. Because this is of little interest for our
purpose, we have not explored further this regime where
numerical calculations get more difficult since one has to
deal with very different energy scales. The most interest-
ing feature of our results is naturally the maximum ob-
tained for ∆0/Tc at intermediate coupling strength. This
maximum increases with decreasingΩ/T 0

c while the λ cor-
responding to the maximum increases at the same time.
In particular for Ω/T 0

c = 0.2 we find ∆0/Tc close to 5.
Clearly this trend continues as Ω goes to zero. Indeed as
it is clear from above, the gap is independent of λ in this
limit whereas we have seen that Tc decreases toward zero.
Therefore we can in principle obtain a ratio ∆0/Tc as high
as we like. However this would correspond to extreme pa-
rameter values.

On the other hand we find among our results a range
which is quite compatible with experiments. Indeed for
Ω/T 0

c = 0.4 we obtain a broad maximum for λ ≈ 0.4 with

∆0/Tc ≈ 3.2. This fairly small value of λ is quite reason-
able. The value of ∆0/Tc is already quite consistent with
experimental data, all the more if we take into account
that anisotropy of the order parameter is likely to raise
∆0/Tc by itself, as it does for d-wave in weak coupling
where this ratio is raised by 20 %. To be more specific,
for Ω/T 0

c = 0.4, we find ∆0/Tc ≥ 3.1 for 0.36 ≤ λ ≤ 0.52.
For a typical value of Tc = 90 K, we find that the
range of boson frequency goes from 115 K to 170 K. For
Ω/T 0

c = 0.3 we obtain correspondingly ∆0/Tc ≥ 3.6 for
0.42 ≤ λ ≤ 0.73, with Ω ranging between 100 K to 170 K.
This is a frequency range where an important weight for
phonons is known to exist in these compounds. Therefore,
at least for optimally doped or overdoped compounds, our
explanation for the high value of ∆0/Tc is completely co-
herent with experiment, which is quite satisfactory. For
markedly underdoped compounds the general situation is
not so clear and it is likely that the very high values ob-
served in this case require an additional physical source
which might for example be disorder.

However a very striking feature of our interpretation is
that it requires a fairly high value of T 0

c , that is the critical
temperature without bosons, ranging from 290 K to 420 K
for Ω/T 0

c = 0.4 and from 330 K to 560 K for Ω/T 0
c = 0.3.

Naturally it would be quite desirable to check experimen-
tally this physical aspect of our model. One possible way
would be to send a flux of phonons with the proper fre-
quency to see if Tc is affected as expected (these phonons
could be generated themselves by tunnel junctions). An-
other much more interesting, though speculative, possibil-
ity is to try to raise Tc toward T 0

c under static conditions.
This could be done through a shift of the phonon spec-
trum, for example by applying high pressure in order to
lower the number of phonons which participate in the de-
crease of Tc. Actually it is known that, for Hg compounds,
Tc increases with pressure, which is compatible with our
model. A test would be to measure also ∆0 under pres-
sure and check that it is less sensitive to pressure than Tc.
Note that such a result (decreasing ∆0/Tc with increas-
ing Tc) would be quite opposite to common expectation.
This would be a clear indication that one can hope to raise
Tc even further by modification of the phonon spectrum.
It is also important to keep in mind that it is often possi-
ble to obtain effectively an increase of pressure by proper
chemical substitution in the compound. Therefore an un-
derstanding of the effect of pressure would open the way to
a possible chemical increase of Tc. Finally it is tempting to
believe that the pseudogap observed above Tc in under-
doped compounds might be related to T 0

c and could be
obtained by treating our model beyond mean-field theory.

In conclusion we have shown that the adverse effect
on d-wave superconductors of boson scattering between
regions with opposite sign of the order parameter provide
a simple and natural explanation for the high values of
∆0/Tc observed experimentally.

We are very grateful to A.A. Abrikosov and D. Rainer for very
stimulating discussions.
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